100,853 research outputs found

    Application of LANDSAT images to wetland study and land use classification in west Tennessee, part 1

    Get PDF
    The author has identified the following significant results. densitometric analysis was performed on LANDSAT data to permit numerical classification of objects observed in the imagery on the basis of measurements of optical density. Relative light transmission measurements were taken on four types of scene elements in each of three LANDSAT black and white bands in order to determine which classification could be distinguished. The analysis of band 6 determined forest and agricultural classifications, but not the urban and wetlands. Both bands 4 and 5 showed a significant difference existed between the confirmed classification of wetlands-agriculture, and urban areas. Therefore, the combination of band 6 with either 4 or 5 would permit the separation of the urban from the wetland classification. To enhance the urban and wetland boundaries, the LANDSAT black and white bands were combined in a multispectral additive color viewer. Several combinations of filters and light intensities were used to obtain maximum discrimination between points of interest. The best results for enhancing wetland boundaries and urban areas were achieved by using a color composite (a blue, green, and red filter on bands 4, 5 and 6 respectively)

    Remote sensing application to regional activities

    Get PDF
    Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray

    Determination of load sequence effects on the degradation and failure of composite materials

    Get PDF
    A theoretical model was established to predict the fatigue behavior of composite materials, with emphasis placed on predictions of the degradation of residual strength and residual stiffness during fatigue cycling. The model parameters were evaluated from three test series including static strength fatigue life and residual strength tests. The tests were applied to two graphite/epoxy laminates. Load sequence effects were emphasized for both laminates and the predicted results agreed quite well with subsequent verification tests. Dynamic as well as static stiffness reduction data were collected by use of a PDP11-03 computer, which performed quite satisfactorily and permitted the recording of a substantial amount of dynamic stiffness reduction data

    Design and development of a self-healing fuse

    Get PDF
    Mercury-filled self-healing fuses for protecting solid state circuits from faults - design and developmen

    Statistical characterization of the fatigue behavior of composite lamina

    Get PDF
    A theoretical model was developed to predict statistically the effects of constant and variable amplitude fatigue loadings on the residual strength and fatigue life of composite lamina. The parameters in the model were established from the results of a series of static tensile tests and a fatigue scan and a number of verification tests were performed. Abstracts for two other papers on the effect of load sequence on the statistical fatigue of composites are also presented

    Effect of exhaust nozzle configuration on aerodynamic and acoustic performance of an externally blown flap system with a quiet 6:1 bypass ratio engine

    Get PDF
    A highly suppressed TF-34 engine was used to investigate engine and flap interaction noise associated with an externally blown flap STOL powered lift system. Noise, efficiency, and velocity decay characteristics of mixed and separate flow exhaust systems including convergent, co-annular, and lobed designs were determined with the engine operating alone. Noise data were then obtained for several of the exhaust configurations with the engine blowing a wing-flap segment. Noise for both the engine alone and the engine with blown flaps showed substantial differences for the various exhaust configurations tested. The differences in observed noise are related primarily to nozzle effective exhaust velocity, flap impingement velocity, and noise spectral shape

    Self-healing fuse

    Get PDF
    Fast-acting current limiting device provides current overload protection for vulnerable circuit elements and then re-establishes conduction path within milliseconds. Fuse can also perform as fast-acting switch to clear transient circuit overloads. Fuse takes advantage of large increase in electrical resistivity that occurs when liquid metal vaporizes
    corecore